Accepted Manuscript

[Type of manuscript] Regular Article

[Title] Effects of acute arm-cranking exercise with electrical muscle stimulation at different intensities on the vascular endothelial function

[Authors] Mizuki Nakamura^{1*}, Hajime Miura², Ayako Murakami³, Yasuaki Tamura⁴

[Affiliations]

¹ Department of Physical Therapy, Faculty of Health Science, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka 567-0801, Japan

² Laboratory for Applied Physiology, Institutes of Socio-Arts and Sciences, Tokushima University, 1-1 Minamijyosanjima, Tokushima, Tokushima 770-8502, Japan

³ Department of Health and Nutrition, Shikoku University, 123-1 Ojinchofurukawa, Ebisuno, Tokushima, Tokushima 771-1192, Japan

⁴ Department of Rehabilitation Medicine, Tokushima Prefecture Naruto Hospital, 1-1-41 Muyacho, Kurosaki, Naruto, Tokushima 772-0001, Japan

[Mailing address] #305 2-21-3 Doicho, Amagasaki, Hyogo 660-0083, Japan

Tables: 1, Figures: 5

Running title: Arm-cranking exercise plus EMS effect vascular function

[Correspondence]

Mizuki Nakamura*, 1-1-41 Sojiji, Ibaraki, Osaka 567-0801, Japan.

TEL: +081-72-621-0881, FAX: +081-72-621-1233

E-mail: mizuki.ishikawa6@gmail.com

Abstract

Arm-cranking exercises combined with electrical muscle stimulation (EMS) of the lower limbs at maximum intensity enhance vascular endothelial function. To bring this procedure into clinical application, we examined the effects of acute arm-cranking exercise combined with lower-extremity EMS at different intensities on vascular endothelial function. The study included eight healthy adult males. After resting in the supine position, arm-cranking exercises were performed at an intensity of 50% VO₂ max for 20 min, and the lower limb received EMS under three trials: maximum intensity trial (A+100%EMS trial), 50% intensity trial (A+50%EMS trial), and 25% intensity trial (A+25%EMS trial). Flow-mediated dilation (FMD), which reflects vascular endothelial function, was measured before and after the procedure, and the normalized FMD (nFMD) was calculated. The mean nFMD before and 30 min after the exercise was 0.8 ± 0.3 and 2.3±1.8, respectively, in the A+100%EMS trial and 0.9±0.4 and 1.4±1.0, respectively, in the A+50%EMS trial, indicating a significant increase after exercise under both trials. No changes were observed in the A+25%EMS trial. The combination of arm-cranking

exercise and 50% intensity EMS appears to be a clinically applicable program for improving vascular endothelial function, even with reduced exercise intensity.

[Keywords] vasodilatation; electrical stimulation; aerobic exercise; upper extremity

Article title

一過性の上肢の有酸素性運動と異なる強度の骨格筋電気刺激が血管内皮機能に 及ぼす影響

Author names

中村 みづき^{1*}, 三浦 哉², 村上 亜弥子³, 田村 靖明⁴

Affiliations

¹ 大阪行岡医療大学医療学部理学療法学科,〒567-0801 大阪府茨木市総持寺1 丁目 1-41

² 徳島大学大学院社会産業理工学研究部,〒770-8506 徳島市南常三島町 2-1
³四国大学生活科学部健康栄養学科,〒771-1192 徳島県徳島市応神町古川字戎 子野 123-1

⁴徳島県鳴門病院リハビリテーション部,〒772-0001 徳島県鳴門市撫養町黒崎 小谷 32

Abstract

上肢の有酸素性運動と最大耐性強度の下肢への骨格筋電気刺激(EMS)の併用 運動は血管内皮機能を向上させる.このプログラムを臨床応用させるためには, 運動プログラムの低強度化が求められるが低強度化した運動プログラムが血管 内皮機能に及ぼす影響については、十分に検討されていない、本研究では、一 過性の上肢の有酸素性運動と異なる強度の下肢 EMS の併用が上腕動脈の血管内 皮機能に及ぼす影響について検討した. 被験者は、健康な成人男性 8 名であり 仰臥位安静後,50% VO2max 強度で20 分間の上肢クランク運動と下肢への EMS を最大耐性強度 (A+100%EMS) 条件, 50% 強度 (A+50%EMS) 条件, 25% 強度 (A+ 25%EMS)条件の3条件を実施させた. 運動前後に血管内皮機能を反映するFMD を測定し,標準化 FMD (nFMD)を算出した. 運動前および運動終了 30 分後の nFMD は、A+100%EMS 条件で 0.8±0.3、2.3±1.8 であり、A+50%EMS 条件で 0.9±0.4, 1.4±1.0 であり、両条件ともに運動前と比較して運動終了 30 分後に有 意な増加を示した. A+25%EMS 条件では, 運動前後に変化は認められなかった. 50%強度の EMS においても、他動的な筋収縮による血流量の増加、一酸化窒素 などの血管拡張物質の産生促進などにより, nFMD が増加したことが考えられ る. 上肢の有酸素性運動と 50% 強度の下肢 EMS の併用運動は、血管内皮機能の 改善を目的とした臨床応用可能な運動プログラムとなる可能性が示唆された.

1 Introduction

2 Walking and bicycle pedaling are used as exercise therapies for cardiovascular 3 diseases (CVDs) and metabolic diseases. The effects of such lower-limb aerobic exercises on arterial function include improved arterial compliance ¹, improved flow-mediated 4 dilation (FMD)²⁾, and decreased pulse wave velocity (PWV)³⁾. The mechanism for this 5 is that increased blood flow due to exercise increases shear stress, a mechanical stress on 6 7 the vessel wall that causes vasodilation due to the release of nitric oxide from vascular endothelial cells ⁴). Thus, aerobic exercise of the lower extremities has been shown to 8 reduce the risk of developing CVDs. 9 10 However, patients with spinal cord injury (SCI) and paralysis of the lower extremities and orthopedic patients with joint pain and deformity have difficulty performing the 11 12 recommended aerobic exercises, limiting daily physical activity and rehabilitation. Patients with SCI have higher resting femoral artery PWV 5) and lower arterial 13 compliance than healthy patients ⁶⁾. Moreover, they are associated with increased 14 mortality from CVD due to atherosclerosis and hypertension ⁷). Aerobic exercise of the 15 upper extremities may be considered when aerobic exercise of the lower extremities is 16 difficult. Miura et al. reported no significant change in the brachial-ankle PWV before 17

and after 30 min of moderate-intensity arm crank exercise in healthy adult men⁸⁾. These

19	results suggest that aerobic exercise of the upper extremities does not alter arterial
20	function; however, electric muscle stimulation (EMS), which is effective in increasing
21	muscle strength ⁹ , energy metabolism ¹⁰ , and blood flow ¹¹ , has attracted attention as a
22	possible solution. Rappelt et al. reported that a hybrid exercise involving arm-cranking
23	(35.9±8.4 W, 50% of body mass) combined with EMS (4 Hz, 350 $\mu s)$ at the maximum
24	tolerated intensity increased oxygen uptake compared to arm-cranking exercise alone
25	(hand cycle: approximately 13.5 ml/min/kg vs. hand cycle with EMS: approximately 19.0
26	ml/min/kg) $^{12)}$. In addition, arm-cranking exercise at 50% VO ₂ max combined with EMS
27	of the lower extremities at maximal tolerable intensity has been reported to improve
28	brachial artery (BA) endothelial function ¹³⁾ , suggesting the possibility of improving
29	endurance and cardiovascular performance in patients with SCI and those that are
30	wheelchair-dependent. However, in both studies, the stimulation intensity of EMS was at
31	the maximum tolerable intensity. In clinical physical therapy, it is difficult to actively
32	perform high-intensity exercise because many patients have a combination of various
33	diseases associated with poor physical function and various risks associated with exercise.
34	In addition, discomfort and pain caused by high-intensity electrical stimulation (ES) may
35	affect withdrawal from therapy 14). Therefore, identification of more clinically appropriate
36	stimulus intensities for ES conditions is important to implement physical therapy. A new

37	program combining low-intensity aerobic exercise for the upper extremities and EMS for
38	the lower extremities should be developed. If the beneficial effects of combined arm-
39	cranking exercise and low-intensity EMS on vascular endothelial function are
40	demonstrated, this could be a new exercise therapy that could be applicable to more
41	patients; however, this point has not been adequately investigated and may be a factor
42	preventing the widespread use of this hybrid exercise.
43	Therefore, this study aimed to investigate the effects of acute arm-cranking exercise
44	combined with EMS of the lower extremities at different intensities on BA vascular
45	endothelial function.

46

47 Methods

Participants 48

49 The study participants were eight healthy adult men (age: 21.6±0.5 years, height: 169.4±5.8 cm, weight: 67.1±9.1 kg, body mass index: 23.6±3.0 kg/m²) who had never 50 smoked, did not take regular medications or supplements, and exercised for 1-2 51 times/week. This study was approved by the Research Ethics Committee of the 52 Department of Physical Therapy, Faculty of Health Science, Osaka Yukioka College of 53 Health Science (#33-0005), Japan. Additionally, the participants were provided with an 54

oral explanation of the content and purpose of the study, including refusal, withdrawal,

and interruption of participation, and written informed consent was obtained.

57

```
58 Study Design
```

The protocol used in this study and the picture of the experiment are shown in Figures 59 1 and 2. All participants visited the laboratory four times for measurements. On the first 60 day, a maximal exercise test with arm-cranking exercise was performed, and at least 1 61 week after the test, the participants were randomly assigned to a trial combining EMS 62 with maximum tolerable intensity for pain and moderate-intensity arm-cranking exercise 63 64 (A+100% EMS trial), a trial combining moderate-intensity EMS (A+50% EMS trial), or a trial combining low-intensity EMS (A+25%EMS trial). For the maximal exercise 65 tolerance test and arm-cranking exercise for each trial, the participants sat in a chair and 66 grasped the pedals of a bicycle ergometer (AEROBIKE 75XL III; Combi Co., Tokyo, 67 Japan) fixed on a platform with both hands. The bicycle ergometer was grounded such 68 that the crankshaft and the participants' acromion were level, and the participants sat with 69 their knee joints flexed at 90°. The rotation rate of the arm-cranking exercise in the 70 71 maximal exercise tolerance test and each condition was defined as 60 rotations per minute. 72 All the participants were instructed to limit their alcohol consumption, caffeine intake,

73	and strenuous exercise from the day before to the end of the experiment. Measurements
74	were taken simultaneously in a room with controlled room temperature (23-25°C) and
75	humidity (50-70%) at least 4 hours after eating.
76	Figure 1
77	Figure 2
78	
79	Maximal Exercise Tolerance Test
80	To determine the intensity of the arm-cranking exercise, a multistage exercise tolerance
81	test was performed on a bicycle ergometer to measure the maximal oxygen uptake (\dot{VO}_2
82	max). After resting in a chair for 3 min, a maximal exercise tolerance test was performed,
83	starting at 6W and increasing the load in 6 W/min steps.
84	
85	Flow-Mediated Vasodilation
86	In this study, the endothelial function of the BA was assessed. The endothelial function
87	of the BA is an indicator of systemic endothelial function. Moreover, the FMD of the BA
88	is highly significant because it is a predictor of CVDs ^{15, 16)} . The participants were asked
89	to rest in the supine position for at least 15 min to obtain the resting arm systolic blood
90	pressure (SBP) and diastolic blood pressure (DBP) using a standard sphygmomanometer

91	on their left arm. An occlusion cuff was placed around the right forearm, and two
92	electrocardiogram leads were attached to the wrists to measure the heart rate (HR). The
93	FMD was quantified using high-resolution ultrasonography (UNEXEF 38G; UNEX Co.,
94	Nagoya, Japan) to measure endothelial function. The BA was scanned longitudinally 5-
95	10 cm proximal to the elbow joint. To occlude the blood flow, the cuff was inflated to 50
96	mmHg above the SBP for 5 min. Upon cuff deflation, the blood flow velocity and arterial
97	diameter were measured for an additional 3 min, and the change in the BA diameter was
98	immediately expressed as a percentage change relative to the vessel diameter before cuff
99	inflation. The FMD was calculated as the baseline value (Di base) before the cuff was
100	released to the peak value after cuff release (Di peak). The FMD was calculated using the
101	following equation: FMD (%) = {(Di peak-Di base)/Di base} × 100. A detailed
102	description of the measurements was provided in a previous study 17).
103	In this study, peak shear rate (PSR) was calculated from the vessel diameter and blood

flow velocity to compare the FMD in different trials. The blood flow velocity was calculated from the color Doppler data and displayed as a waveform in real-time. The PSR was calculated using the formula: PSR = [difference in flow velocity between thehyperemic response (peak after cuff deflation; FV peak) – baseline (FV base)] / baselineBA diameter. Subsequently, the normalized FMD (nFMD) was calculated as follows ¹⁸:

109 nFMD (a. u.) = FMD/PSR

All measurements were performed after 15 min of supine rest and 30 min after each
trial. FMD was measured by all participants with the right hand. The HR was measured
every 5 min during each trial using thoracic bipolar induction (POLAR H-10; Polar Co.,
Ltd., Tokyo, Japan).

114

115 Electrical Muscle Stimulation

116 In the EMS trial, belt electrode-skeletal muscle electrical stimulation (G-TES; Homer Ion Co., Ltd., Tokyo, Japan) was performed at a frequency of 4 Hz, pulse width of 250 µs 117 ¹⁹, and exponentially increasing waves. EMS was applied to the calf and thigh muscles, 118 including the quadriceps femoris, hamstrings, gastrocnemius, and hip adductor muscles, 119 120 using a stimulator. A value of 4 Hz was selected because this study aimed to promote peripheral circulation through aerobic exercises ²⁰⁾. One silicon-rubber electrode band 121 122 (5.3×93.3 cm) was wrapped around the lumbar region, two bands (5.3×69.6 cm) were wrapped around both distal parts of the thighs, and two bands (5.3×54.6 cm) were 123 wrapped around both ankles. As the stimulation cycles of the bilateral thighs and lower 124 125 legs were synchronized, the bilateral lower-extremity muscle groups were simultaneously 126 stimulated. The average stimulus intensity was approximately 3.0±0.6 mA in the thighs

and 0.8±0.2mA in the ankle in the A+100%EMS trial, 1.6±0.3 mA in the thighs and
0.4±0.1 mA in the ankle in A+50%EMS trial, and 0.8±0.1 mA in the thighs and 0.3±0.1
mA in the ankle in the A+25%EMS trial.

130

131 Statistical Analysis

The results of this study were analyzed for normality using the Shapiro–Wilk test to confirm distribution of the data. The measurements for each trial were compared using a two-way repeated-measures analysis of variance to test for the presence or absence of an interaction. Moreover, the Bonferroni test was performed for posterior analysis. All measurements are expressed as means and standard deviations and were considered statistically significant at a significance level of <5%.

138

139 Results

140 HR and VO₂ during each trial

The changes in HR and VO₂ during the three trials are shown in Figures 3 and 4. There was a significant difference in the HR at 5 and 20 min during exercise in the A+100%EMS trial. Moreover, the HR in the A+100%EMS trial was significantly higher than that in the A+25%EMS trial at 5 and 10 min during exercise. From the 5 to 20 min timepoints, the 145 VO₂ during exercise was significantly higher in the A+100%EMS trial than in the 146 A+25%EMS trial. \dot{VO}_2 during exercise was also higher in the A+100%EMS trial than in 147 the A+50%EMS trial at 5 and 20 min. Moreover, in the A+100%EMS trial, there was a 148 significant increase in \dot{VO}_2 at 20 min of exercise compared with that at 5 min. The average 149 \dot{VO}_2 from 5 to 15 min of exercise was as follows: 19.1 ± 1.02 ml/kg/min ($85\%\dot{VO}_2$ max) 150 in the A+100%EMS trial, 15.75 ± 0.65 ml/kg/min ($70\%\dot{VO}_2$ max) in the A+50%EMS trial, 151 and 13.7 ± 0.20 ml/kg/min ($60\%\dot{VO}_2$ max) in the A+25%EMS trial.

152

153 Brachial artery function before and after each trial

The changes in SBP, DBP, HR, Di base, Di peak, FV base, FV peak, PSR, and FMD 154 before and after each trial are shown in Table 1. No interactions were observed for all 155 156 measurements. In the A+50%EMS and A+25%EMS trials, a significant decrease was observed in the DBP 30 min after exercise compared to before (p<0.05). In addition, a 157 significant increase was observed in the HR 30 min after exercise compared to before in 158 the A+100%EMS trial (p<0.05). In all trials, there was a significant increase in the Di 159 160 base and Di peak 30 min after exercise compared to before exercise (p<0.05 and p<0.001, 161 respectively). There was no significant main effect or interaction among the SBP, FV base, FV peak, FMD, and PSR before and 30 min after exercise completion in each trial. The 162

163	changes in nFMD before and 30 min after exercise completion are shown in Figure 5
164	(0.8±0.3 and 2.3±1.8 in the A+100%EMS trial, 0.9±0.4 and 1.4±1.0 in the A+50%EMS
165	trial, and 0.8 ± 0.2 and 1.1 ± 0.5 in the A+25%EMS trial, respectively). In the A+100%EMS
166	and A+50%EMS trials, a significant increase in the nFMD was observed 30 min after
167	exercise completion compared with that before $(p<0.05)$.

168 **Table 1**

169 Figures 3, 4, and 5

170

171 Discussion

In this study, we investigated the effects of moderate-intensity arm-cranking exercises 172173 with different EMS intensities on vascular endothelial function in healthy adult men. The 174results showed that the BA nFMD increased 30 min after exercise completion compared 175 to that before in the maximum tolerable intensity EMS trial (A+100%EMS trial) and moderate-intensity EMS trial (A+50%EMS trial). It even showed a higher trend in the 176 177 A+100%EMS trial than in the A+50%EMS trial. These results suggest that moderateintensity arm-cranking exercise with 100%EMS enhances vascular endothelial function, 178 179 similar to the results of previous studies ¹³. However, a lower intensity of 50%EMS also 180 enhances vascular function.

181	Acute responses after EMS include increases in oxygen uptake and HR ²¹ , which have
182	been reported to rise with increasing intensity of ES $^{22)}$ and combined upper- and lower-
183	extremity exercise rather than with upper- and lower-extremity exercise alone. Rappelt et
184	al. found that exercise with EMS to the lower-extremity (4 Hz, 250 μ s, maximal tolerance)
185	. combined with a hand cycling resulted in higher \dot{VO}_2 and vasodilatory blood lactate levels
186	than using the hand cycling alone or EMS to the lower-extremity alone ¹²). Moreover,
187	increases in stimulus intensity and pulse width have also been reported to increase blood
188	flow ^{23).} This finding indicates that the combination of active exercise and ES has
189	beneficial effects on cardiac dynamics and metabolism. In the A+50%EMS and
190	A+25%EMS trials, DBP decreased significantly 30 min after exercise compared to before.
191	This may be due to an increase in circulating blood flow caused by the muscle pumping
192	action of EMS to the lower limbs at low to moderate intensities. However, no change in
193	blood pressure was observed before and after exercise in the A+100%EMS trial, possibly
194	due to the effects of high-intensity ES and high-intensity aerobic exercise on the
195	autonomic nervous system. Painful ES, such as in the A+100%EMS trial, may be
196	perceived as a nociceptive stimulus, which increases sympathetic nerve activity, resulting
197	in the inhibition of peripheral vasodilation, and high-intensity aerobic exercise may
198	increase the level of protein carbonyl, an oxidative stress marker, and contribute to

inactivation of nitric oxide ²⁴. Thus, A+100%EMS trial had no effect on blood pressure
before or after exercise, suggesting that the A+50%EMS and A+25%EMS trials are not
overloading exercises for blood pressure.

202 Most importantly, the nFMD increased significantly in the A+100%EMS and A+50%EMS trials after exercise completion compared to that before exercise, with the 203 204 degree of increase being greater in the A+100%EMS trial but not significantly different 205 between trials. Regarding the stimulation intensity of EMS, Karavidas et al. found that 206 after 6 weeks of functional ES training (25 Hz; stimulus intensity was a visible, painless muscle contraction) in 16 patients with chronic heart failure, the BA FMD improved 207 compared to before the training (5.77±2.58%, before; 7.56±2.63%, after) ²⁵⁾. It has also 208 been reported that acute low-intensity EMS (10.7±4.7% of HR reserve, approximately 2 209 210 metabolic equivalent during EMS exercise) improves brachial-ankle PWV and cardioankle vascular index, which reflect arterial function ²⁶. This was attributed to increased 211 212 local blood flow due to EMS-induced muscle pumping in the lower-extremity muscles. However, no effect on arterial function in the upper extremity was observed. In the present 213 214 study, it was suggested that blood flow in the lower extremities, the site of stimulation, may have increased; however, the increase in nFMD in the BA may have been due to a 215 216 greater effect of EMS-induced metabolites. Muscle contraction induced by ES partially

217	reverses the order of motor units to be mobilized ²⁷⁾ . Moreover, when more type II fibers
218	are mobilized (type II fiber preferential recruitment) during ES, the release of vasodilators,
219	such as hydrogen ions and phosphate, increases, which may affect vasodilation ²⁸⁾ . Since
220	these vasodilators increase depending on the ES intensity, a similar vasodilatory response
221	to stimulation intensity may have been observed in the present study ²⁹⁾ . In addition, EMS
222	stimulation releases vasodilator P and calcitonin gene-related peptides from nociceptive
223	C fibers, which causes dilation of the skin vessels. The dilation of cutaneous vessels
224	requires an increase in cardiac output, which may be involved in the increase in blood
225	flow in the conduit arteries. These factors suggest that EMS can promote peripheral
226	circulation and vasodilation even without the maximum intensity that can be tolerated,
227	and the nFMD may have been improved by medium-intensity EMS in this study.
228	It has been reported that individuals with SCI (especially those with high lesions)
229	have lower aerobic capacity than normal and healthy individuals due to reduced physical
230	activity (due to wheelchair-dependent living) and that aerobic capacity decreases linearly
231	with increasing injury levels ³⁰⁾ . To address this issue, previous studies have examined the
232	effects of hybrid exercise combining active exercise and ES on cardiorespiratory function.
233	These studies have reported that combined exercise of the upper extremities and ES of
234	the lower extremities improves aerobic capacity in wheelchair-dependent individuals with

235	SCI ¹²⁾ . In the present study, the oxygen uptake during the hybrid exercise was
236	approximately $85\%\dot{VO}_2$ max in the A+100%EMS trial and $70\%\dot{VO}_2$ max in the
237	A+50%EMS trial, suggesting the possibility of improving endurance capacity with
238	habitual continuation. These results suggest that EMS at 50% of the maximum tolerable
239	intensity may be a new exercise program that can improve vascular function and
240	endurance at a lower intensity than that used in the A+100%EMS trial.
241	The clinical implications of the present study are that the combined use of arm-
242	cranking exercises with EMS at a lower intensity may be indicated for more patients with
243	the goal of improving vascular endothelial function. Previous studies have reported that
244	the stronger the intensity of ES, the greater the effect on circulatory dynamics; however,
245	in clinical practice, the appropriate exercise intensity should be set while assessing the
246	respiratory-circulatory response to exercise due to the reduced physical activity and
247	exercise tolerance caused by paralysis of the lower extremities, such as in patients with
248	SCI. Furthermore, ES therapy often requires a gradual increase in exercise intensity
249	because patients may discontinue treatment due to discomfort caused by stimulation.
250	Therefore, combining arm-cranking exercise with moderate-intensity lower-extremity
251	EMS may be a more clinically suitable exercise program compared to combining it with
252	ES of maximum tolerable intensity.

253	This study had several limitations. In clinical applications, it is necessary to consider
254	paralysis accompanied by sensory disturbances, such as SCI. In this study, low-strength
255	conditions were set from the maximum tolerable strength; however, it is necessary that
256	the examiner objectively evaluates muscle contraction because it may be difficult to
257	report the maximum tolerance due to sensory impairment. In addition, it has been shown
258	that the percentage of type II fibers is higher in paralyzed muscles than in non-paralyzed
259	muscles 31 ; therefore, whether the results of that study will be similar to those of the
260	present study remains unclear. Furthermore, since the present study was conducted in the
261	acute phase, changes in vascular function and aerobic capacity due to the intervention
262	were unknown. The vasoactive substances produced by exercise, such as nitric oxide,
263	were also unknown, as no biochemical tests were performed. The FMD is usually
264	normalized using the area under the curve of the shear rate. However, in the present study,
265	it was normalized using PSR only. Furthermore, since the stimulation intensity of EMS
266	was determined subjectively, the possibility of individual differences in muscle
267	contraction and body composition (lean body mass, subcutaneous fat thickness, and
268	circumference) cannot be ignored. Muscle contraction and body composition should be
269	measured in future studies.

271 Conclusion

272	The beneficial effects of ES on the body have been shown in various studies, making it
273	an important therapeutic option in rehabilitation. However, patients' disability profiles
274	vary widely, and rehabilitation needs to be tailored to their unique severity and symptoms.
275	In the present study, the combination of moderate-intensity arm rotation exercise and 50%
276	intensity EMS suggests that vascular endothelial function can be improved even at
277	reduced exercise intensity. Therefore, this may be a new exercise program option for
278	patients who are harmed by the intensity and stimulation of ES and high exercise intensity.
279	
280	Acknowledgments
281	The authors wish to thank Tatsuya Fujikawa for their skillful assistance with data
282	collection for this study.
283	This work was supported by JSPS KAKENHI Grant Number JP20K23304.
284	
285	Conflict of Interests
286	There is no conflict of interests for this study.
287	

288

289 Contribution	ons
-------------------------	-----

290	All authors contributed to the study conception and design. MN collected the data and
291	drafted the manuscript. HM, AM, and YT revised the manuscript. All authors approved
292	the final version of the manuscript.
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	

307 **References**

308	1.	Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. 2000.
309		Aging habitual exercise and dynamic arterial compliance. Circ J 102: 1270-1275.
310	2.	Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, Kajiyama G,
311		Oshima T. 1999. Regular aerobic exercise augments endothelium-dependent
312		vascular relaxation in normotensive as well as hypertensive subjects: role of
313		endothelium-derived nitric oxide. Circ J 100: 1194-1202.
314	3.	Kingwell BA, Berry KL, Cameron JD, Jennings GL, Dart AM. 1997. Arterial
315		compliance increases after moderate-intensity cycling. Am J Physiol 273: H2186-
316		H2191.
317	4.	Cosio-Lima LM, Thompson PD, Reynolds KL, Headley SA, Winter CR, Manos T,
318		Lagasse MA, Todorovich JR, Germain M. 2006. The acute effect of aerobic exercise
319		on brachial artery endothelial function in renal transplant recipients. Prev Cardiol 6:
320		211-214.
321	5.	Miyatani M, Masani K, Oh P, Miyachi M, Popovic MR, Craven BC. 2009. Pulse
322		wave velocity for assessment of arterial stiffness among people with spinal cord
323		injury: a pilot study. J Spinal Cord Med 32: 72-78.
324	6.	Wecht JM, Weir JP, DeMeersman RE, Spungen AM, Bauman WA. 2004. Arterial

325		stiffness in persons with paraplegia. J Spinal Cord Med 27: 255-259.
326	7.	Garshick E, Kelley A, Cohen SA, Garrison A, Tun CG, Gagnon D, Brown R. 2005.
327		A prospective assessment of mortality in chronic spinal cord injury. Spinal Cord 43:
328		408-416.
329	8.	Miura H, Ishikawa M, Deguchi K. 2018. Moderate-intensity arm-cranking exercise
330		may not improve arterial function in healthy adult men. Int J Sports Med 39: 962-
331		966.
332	9.	Dobsák P, Nováková M, Siegelová J, Fiser B, Vítovec J, Nagasaka M, Kohzuki M,
333		Yambe T, Nitta S, Eicher JC, Wolf JE, Imachi K. 2006. Low-frequency electrical
334		stimulation increases muscle strength and improves blood supply in patients with
335		chronic heart failure. Circ J 70: 75-82.
336	10.	Hamada T, Hayashi T, Kimura T, Nakao K, Moritani T. 1985. Electrical stimulation
337		of human lower extremities enhances energy consumption, carbohydrate oxidation,
338		and whole body glucose uptake. J Appl Physiol 96: 911-916.
339	11.	Janssen TW, Hopman MT. 2003. Blood flow response to electrically induced twitch
340		and tetanic lower-limb muscle contractions. Arch Phys Med Rehabil 84: 982-987.
341	12.	Rappelt L, Held S, Donath L. 2022. Handcycling with concurrent lower body low-
342		frequency electromyostimulation significantly increases acute oxygen uptake:

343 implications for rehabilitation and prevention. *PeerJ* 10: e13333.

344	13.	Ishikawa M, Miura H, Ayako A, Tamura Y, Matsumoto A. 2020. Influence of acute
345		arm-cranking exercise with electrical muscle stimulation on vascular endothelial
346		function. Phys Ther Re 47: 27–34 (in Japanese).
347	14.	Platon B, Thörn SE, Mannheimer C, Andréll P. 2020. Effects of high-frequency,
348		high-intensity transcutaneous electrical nerve stimulation versus intravenous opioids
349		for pain relief after hysteroscopy: a randomized controlled study. Obstet Gynecol Sci
350		63: 660-669.
351	15.	Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. 2003. The clinical implications of
352		endothelial dysfunction. J Am Coll Cardiol 42: 1149-60.
353	16.	Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. 2007. Brachial flow-
354		mediated dilation predicts incident cardiovascular events in older adults: the
355		Cardiovascular Health Study. Circ J 115: 2390-2397.
356	17.	Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA,
357		Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel
358		R; International Brachial Artery Reactivity Task Force. 2002. Guidelines for the
359		ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the
360		brachial artery: a report of the International Brachial Artery Reactivity Task Force. J

361 Am Coll Cardiol 39: 257-265.

362	18.	Tarro Genta F, Eleuteri E, Temporelli PL, Comazzi F, Tidu M, Bouslenko Z, Bertolin
363		F, Vigorito C, Giannuzzi P, Giallauria F. 2013. Flow-mediated dilation normalization
364		predicts outcome in chronic heart failure patients. J Card Fail 19: 260-267.
365	19.	Watanabe K, Taniguchi Y, Moritani T. 2014. Metabolic and cardiovascular responses
366		during voluntary pedaling exercise with electrical muscle stimulation. Eur J Appl
367		<i>Physiol</i> 114: 1801-1807.
368	20.	Miyamoto T, Kamada H, Tamaki A, Moritani T. 2016. Low-intensity electrical
369		muscle stimulation induces significant increases in muscle strength and
370		cardiorespiratory fitness. Eur J Sport Sci 16: 1104-1110.
371	21.	Hooker SP, Figoni SF, Rodgers MM, Glaser RM, Mathews T, Suryaprasad AG,
372		Gupta SC. 1992. Metabolic and hemodynamic responses to concurrent voluntary arm
373		crank and electrical stimulation leg cycle exercise in quadriplegics. J Rehabil Res
374		<i>Dev</i> 29: 1-11.
375	22.	Banerjee P, Clark A, Witte K, Crowe L, Caulfield B. 2005. Electrical stimulation of
376		unloaded muscles causes cardiovascular exercise by increasing oxygen demand. Eur
377		J Cardiovasc Prev Rehabil 12: 503-508.

378 23. Yang SG, Gong X, Wei SK, Gu XF, Shi J, Jiang C, Wan DQ, Wang JW, Dai KR, Yan

379		MN. 2014. A hemodynamic study of the effect of neuromuscular electrical
380		stimulation on enhancing popliteal venous flow. J Shanghai Jiaotong Univ 19: 706-
381		711.
382	24.	Lamprecht M, Oettl K, Schwaberger G, Hofmann P, Greilberger JF. 2009. Protein
383		modification responds to exercise intensity and antioxidant supplementation. Med
384		Sci Sports Exerc 41: 155-163.
385	25.	Karavidas AI, Raisakis KG, Parissis JT, Tsekoura DK, Adamopoulos S, Korres DA,
386		Farmakis D, Zacharoulis A, Fotiadis I, Matsakas E, Zacharoulis A. 2006. Functional
387		electrical stimulation improves endothelial function and reduces peripheral immune
388		responses in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 13:
389		592-597.
390	26.	Oda H, Fujibayashi M, Matsumoto N, Nishiwaki M. 2022. Acute effects of low-
391		intensity electrical stimulation on segmental arterial stiffness. Front Physiol 13:
392		828670.
393	27.	Feiereisen P, Duchateau J, Hainaut K. 1997. Motor unit recruitment order during
394		voluntary and electrically induced contractions in the tibialis anterior. Exp Brain Res
395		114: 117-123.
396	28.	Hilton SM, Hudlická O, Marshall JM. 1987. Possible mediators of functional

- 397 hyperemia in skeletal muscle. *J Physiol* 282: 131-147.
- 398 29. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF. 1995. Increase of meningeal
- 399 blood flow after electrical stimulation of rat dura mater encephali: mediation by
- 400 calcitonin gene-related peptide. *Br J Pharmacol* 114: 1397-1402.
- 401 30. Battikha M, Sà L, Porter A, Taylor JA. 2014. Relationship between pulmonary
- 402 function and exercise capacity in individuals with spinal cord injury. Am J Phys Med
- 403 *Rehabil* 93: 413-421.
- 404 31. Malisoux L, Jamart C, Delplace K, Nielens H, Francaux M, Theisen D. 2007. Effect
- 405 of long-term muscle paralysis on human single fiber mechanics. *J Appl Physiol* 102:
- 406 340-349.

	A+100%EMS trial			A+50%EMS trial			A+25%EMS trial			
	before	after 30 minutes	time effect within-group p-value	before	after 30 minutes	time effect within-group p-value	before	after 30 minutes	time effect within-group p-value	group × time interaction p-value
SBP (mmHg)	118.9 ± 11.6	118.0 ± 6.6	0.80	119.8 ± 10.5	120.3 ± 10.1	0.81	119.4 ± 15.4	121.0 ± 16.8	0.35	0.50
DBP (mmHg)	66.3 ± 6.9	62.0 ± 5.1	0.18	67.0 ± 6.4	61.1 ± 6.5	0.04^{*}	67.4 ± 5.5	62.3 ± 6.0	0.01^{*}	0.72
HR (bpm)	63.8 ± 10.0	74.4 ± 8.4	0.03*	63.5 ± 10.0	70.5 ± 6.8	0.06	64.3 ± 10.0	72.3 ± 7.7	0.12	0.60
Di _{base} (mm)	3.8 ± 0.2	4.3 ± 0.3	0.002^{*}	3.7 ± 0.2	4.15 ± 0.4	0.003*	3.8 ± 0.2	4.1 ± 0.5	0.03*	0.47
Di _{peak} (mm)	4.1 ± 0.3	4.6 ± 0.3	0.001**	4.0 ± 0.2	4.5 ± 0.4	0.002^{*}	4.0 ± 0.2	4.4 ± 0.5	0.03*	0.14
FV _{base} (cm/sec)	10.4 ± 5.2	11.4 ± 6.6	0.33	11.8 ± 8.7	10.3 ± 3.1	0.53	11.0 ± 5.5	12.6 ± 8.8	0.48	0.65
FV _{peak} (cm/sec)	48.1 ± 12.8	40.8 ± 6.6	0.33	47.4 ± 17.8	43.8 ± 19.0	0.51	46.1 ± 5.5	44.2 ± 21.0	0.83	0.83
FMD (%)	7.3 ± 1.0	8.3 ± 2.3	0.31	7.4 ± 0.8	8.3 ± 0.9	0.13	7.3 ± 1.0	6.7 ± 0.8	0.29	0.15
PSR (s ⁻¹)	10.0 ± 3.6	7.1 ± 5.7	0.08	9.7 ± 4.4	8.2 ± 4.4	0.26	9.4 ± 3.2	7.7±3.6	0.42	0.14

Table 1. Changes in brachial artery function before and after each trial

SBP: systolic blood pressure, DBP: diastolic blood pressure, HR: heart rate, Di base: diameter baseline, Di peak: diameter peak line, FV base: flow volume base, FV peak: flow volume peak, FMD: flow-mediated dilation, PSR: peak shear rate. *p<0.05, **p<0.01 vs. before.

Figure Legends

Figure 1. Experimental protocol of test sessions. All subjects performed each test in random order. EMS: electrical muscle stimulation, FMD: flow-mediated dilation

Figure 2. A picture of the experiment.

Figure 3. Changes in heart rate (HR) during each trial.

Values are presented as mean \pm standard deviation (SD).

^ap<0.05 vs. A+25%EMS trial, [§]p<0.05 vs. 5min.

A: arm-cranking exercise

EMS: electrical muscle stimulation

Figure 4. Changes in oxygen uptake (VO₂) during each trial.

Values are presented as mean \pm standard deviation (SD).

^ap<0.05 vs. A+25%EMS trial, ^bp<0.05 vs. A+50%EMS trial, ^cp<0.05 vs. A+50%EMS

trial, [§]p<0.05 vs. 5min.

Figure 5. Changes in normalized flow-mediated dilation (nFMD) before and after each trial.

*p<0.05 vs. before.